A note on fixed points in semimodular lattices
نویسندگان
چکیده
منابع مشابه
A Note on Lattices and Fixed Points
We define complete lattices, and discuss the existence and construction of fixed points of monotone functions on these lattices. We also demonstrate how these results can be used for solving equational systems.
متن کاملA Construction of Semimodular Lattices
In this paper we prove that if !.l' is a finite lattice. and r is an integral valued function on !.l' satisfying some very natural then there exists a finite geometric (that is.• semimodular and atomistic) lattice containing asa sublatticesuch that r !.l'restricted to Sf. Moreover. we show that if, for all intervals of. semimodular lattices of length at most r(e) are given. then can be chosen t...
متن کاملNotes on Planar Semimodular Lattices. Ii. Congruences
We show that in a finite semimodular lattice, the ordering of joinirreducible congruences is done in a special type of sublattice, we call a tight S7.
متن کاملa note on fixed points of automorphisms of infinite groups
motivated by a celebrated theorem of schur, we show that if~$gamma$ is a normal subgroup of the full automorphism group $aut(g)$ of a group $g$ such that $inn(g)$ is contained in $gamma$ and $aut(g)/gamma$ has no uncountable abelian subgroups of prime exponent, then $[g,gamma]$ is finite, provided that the subgroup consisting of all elements of $g$ fixed by $gamma$ has finite index. so...
متن کاملSemimodular Lattices and Semibuildings
In a ranked lattice, we consider two maximal chains, or “flags” to be i-adjacent if they are equal except possibly on rank i . Thus, a finite rank lattice is a chamber system. If the lattice is semimodular, as noted in [9], there is a “Jordan-Hölder permutation” between any two flags. This permutation has the properties of an Sn-distance function on the chamber system of flags. Using these noti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Mathematics
سال: 1980
ISSN: 0012-365X
DOI: 10.1016/0012-365x(80)90152-1